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One-dimensional reaction-diffusion models 4 + 4—0, 4 +A4— A, and 4 +B—0, where in the
latter case like particles coagulate on encounters and move as clusters, are solved exactly with anisotrop-
ic hopping rates and assuming synchronous dynamics. Asymptotic large-time results for particle densi-
ties are derived and discussed in the framework of universality.

PACS number(s): 82.20.Fd, 05.40.+j

Diffusion-limited reactions involving aggregation and
annihilation processes are important in many physical,
chemical, and biological phenomena [1] such as star for-
mation, polymerization, recombination of charge carriers
in semiconductors, soliton and antisoliton annihilation,
biologically competing species, etc. In this work we
study by exact solution effects of anisotropy in one di-
mension (1D), for single-species reactions 4 + 4 — A or
0, and a two-species annihilation model 4 +B —0 in
which like particles coagulate irreversibly. Scaling ap-
proaches [1,2] suggest that in 1D these reactions are fluc-
tuation dominated, and we cannot expect the rate equa-
tion approach to be valid. Indeed the mean-field rate
equation approximation ignores effects of inhomogeneous
fluctuations. Exact solutions and asymptotic arguments,
in 1D, have been used [3] to check general scaling and
universality expectations. The 1D reactions have also
found some experimental applications [4]. These studies
have assumed isotropic hopping (diffusion).

For the reaction 4 + B —0, numerical results and phe-
nomenological considerations suggest [5] that making the
hopping fully directed would change the universality
class in 1D. Specifically, the large-time particle concen-
trations (assuming equal densities of both species) would
scale according to c(¢)~t~!/? instead of the isotropic-
hopping power law ¢ ~!/*. Few exact and numerical re-
sults available in the literature on anisotropic reactions
involving only one species [6] indicate that the power law
is not changed. The model of [5] assumed that like parti-
cles interact via hard-core repulsion; this seems to be an
essential ingredient for observing the changeover in the
universality class.

In this work we report the exact solution for two-
particle annihilation with anisotropic hopping. However,
in order to achieve exact solvability we took ‘‘sticky-
particle” rather than hard-core interactions: like parti-
cles coagulate on encounters and diffuse as groups. Our
exact calculations yield the ¢ ~!/* power law, found ear-
lier for “sticky particles” with different dynamics and iso-
tropic hopping [7]. For unequal initial concentrations,
the large-time behavior changes; the crossover between
the two regimes is derived analytically. We also obtain
exact results for 4 + 4 — A4 or O with anisotropy. The
universality class of dynamics of these reactions is not
affected by hopping anisotropy. An extended version of
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this work has been reported elsewhere [8].

In lattice models the particles hop randomly, to the ex-
tent allowed by their interactions, to their nearest neigh-
bor sites. Two like particles can annihilate on en-
counters, A + A —0, or aggregate, A + A— A. The 1D
kinetics of these reactions is non-mean-field, with the typ-
ical large-time diffusion behavior of the concentration
(per site) c(t)~t~12, For the two-species model, to be
termed the AB model, unlike particles annihilate,
A +B—0. When like species meet, some interaction
must be assumed. The simplest interaction is hard core.
Assuming equal A4 and B concentrations and random,
uniform initial conditions, particle concentrations in the
isotropic case scale according to c(t)~¢t~/* in 1D. A
surprising recent result [5] is the new exponent =1, re-
placing 1, for anisotropic hard-core particle hopping.

We consider the AB annihilation model with the
“sticky particle” interaction. Like particles coagulate ir-
reversibly on encounters, e.g., n4d +tmAd—(n+m)A,
and diffuse as clusters. When unlike clusters meet at a
lattice site, the outcome of the reaction is
nA+mB-—->(n—m)Aifn>m,0if n =m,and (m —n)B
if n <m. Recent numerical results and scaling considera-
tions for these reactions [9] in D=1,2,3 indicate that they
are mean field in D=2,3. However, in 1D the power-law
exponent for the density is 4 [7,9], with a faster power-
law decay ~t 3/ of the minority species in case of un-
equal densities of 4 and B.

Following [10], we first consider diffusion of non-
negative charges on the 1D lattice. Initially, at =0, we
place positive unit charge at each site with probability p
or zero charge with probability 1—p. Furthermore, we
consider synchronous dynamics, i.e., charges at all lattice
sites hop simultaneously in each time step t—t +1,
where the probabilities of hopping to the right, r, and to
the left, / =1—r, are not necessarily equal. This dynam-
ics decouples the even-odd and odd-even space-time sub-
lattices; it suffices to consider only those charges which
are at the lattice sites j=0,+2,+4,... at times
t=0,2,4,..., and lattice sites j==+1,%£3,£5,... at
times t=1,3,5,... . The “interaction” between the
charges is defined by the rule that all charge accumulated
at site j at time ¢ coagulates. There can be 0, 1, or 2 such
charges arriving at j, depending on the random decisions
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regarding the directions of hopping from sites j*1.

This model can also be viewed as diffusion coagulation
of unit-charge “particles” C, i.e., nC +mC—(n +m)C.
Such reactions, without the limitation of positive or in-
teger charges, and with an added process of feeding-in
charge at each time step, have been considered as models
of self-organized criticality and coagulation [11,12], as-
suming isotropic hopping, r =/ =1. This coagulation re-
action can be mapped [7,10] onto both our single-species
and “sticky” 4B models. However, before discussing
this mapping, let us present the exact solution of the
model of coagulating charges with anisotropic hopping,
following the ideas of [10,11].

We define stochastic variables 7;(¢)=1 or 0, with prob-
abilities » and /, respectively. The stochastic equation of
motion for the charges g;(¢), equal to the number of C
particles at site j at time ¢, is

qn(t+1)= )+[1_Tn+1(t)]qn+1(t). (1)

The total number of C particles, or the total charge, in an
interval of k consecutive proper-parity-sublattice sites,
starting at site j at time ¢, is given by

Tn—1(8)g, —1(2

k—1

Sk] Z q]+21(t)
=0

=q](t)+qj+2(t)+ e +qi+2k—2(t) . (2)

Due to conservation of charge, the equations of motion
(1) yield the relation

St t)=1,_1(t)g, (1) +q, (1)
+ o gy 4ok —3(0)
F1 =7y 2k =1 (D) ]Gy 126 —1(2) - 3)

Thus only the two random decisions at the end points are
involved in the dynamics of charges in consecutive-site
intervals. The exact solvability of coagulating-charge
models is based on this property [11].

Let us introduce the function I(s,m)=3§, ,,, and aver-
ages [, (1)=(I(S ;(z),m)). The averaging is over the
stochastic dynamics, i.e., over 7;(t), as well as over the in-
itial conditions. Since the latter are uniform, f} ,(¢) do
not depend on j. Other choices for I(s,m) have been
used [10-12]. In our case f} ,(#) correspond to the
probability to find m charge units in an interval of k sites,
so that f,(¢) is the density (fraction) of sites with
charge m. From (1)-(3), one can derive the discrete
diffusionlike equation

fk,m(t+1)=rl[fk+1,m(t)+fk—l,m(t)]
F (P2 o (8) 4)

The m dependence only enters via the initial conditions
Fiom(0)=p™(1—p)*~™(k ), provided 0=m <k, and O for

m >k. We also define the boundary conditions
fom()=I1(0,m)=8;,, in order to extend (4) to all
t=0,1,2,....

In order to solve (4) we introduce the double generat-
ing function g, (u,w)=37203 w0 pm(Du'w™ It is

also convenient to introduce the variable a =r —[ direct-
ly measuring the hopping anisotropy, r =(1+a)/2 and

1 =(1—a)/2. One can then derive the recursion
1+a?)u—2
gk+1(u,w)+2(—q-)—l-2‘m4gk(u,w)+gk_l(u,w)
(1—a*)u
4
=————F—(wp+1-p )k (5)
(1—a’u 7
with the initial and boundary conditions g, (0,w)

=(wp +1—p)* and go(u,w)=1/(1—u).

The solution of (5) is obtained as a sum of the special
solution Q(wp +1—p)¥, and that homogeneous solution
which is regular at u=0. Here

0=— 4(wp +1—p)
(1—a®u(wp+1—p—A Nwp+1—p—A_) "’
(6)
where A are the roots of the characteristic equation,
— Hu+2vV (1—u)(1—a?
A+=2 (1+a“)u2V (1—u)(l au). o

- (1—a?)u
The root A_, which is nonsingular as u —0, gives the
homogeneous solution proportional to A, where the

proportionality constant is determined by the boundary
conditions. In summary, the solution takes the form

gr(u,w)= A +Q(wp +1—p)k . (8)

1
——Q
1—u

Densities of reactants at lattice sites derive from
Sfx=1,m(t). The m dependence here follows by expanding
(8) in powers of w. The resulting u dependence is compli-
cated. Therefore we will keep the time dependence in the
generating-function form and derive asymptotic results
for large times. Specifically, we use the time-generating
function

G (u 2 fl m
A_
=8m — 4 3
Tllmu (1—af)u
4A . (—p)"
- 2 — 10 &)
(1—a®u(l—p—A )"
We now turn to the single-species reactions. Our ap-
proach follows [10] and related ideas, e.g., [13]. Consider

first the reaction 4 + A — A4. In the coagulating-charge
model we now regard each “‘charged” site as occupied by
an A particle, and each “uncharged” site as empty of 4
particles. The dynamics of the coagulating charges then
maps onto the dynamics of the reaction 4 + 4 — 4. The
quantity f; o(¢) gives the density of empty sites in both
models. Therefore the particle density c(t) in the aggre-
gation model is given by ¢ (£)=1— f ((¢), where ¢ (0)=
The generating function follows from (9),
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Ew=3 c(tu'=———Gylu)
t=0 l1—u

1A
T 1—u

4(1—p)
(1—a®)u(1—p—A,)

(10)

The function E (u) is regular at #=0; the Taylor series

is controlled by the singularity at u=1, where
E(w)=2/V1—a®)[(1/V1—u )+0(1)]. This yields
the leading large-time behavior
2
V(1—a®)mt

We are not aware of other exact solutions for this model
with anisotropic hopping. The leading-order result is ex-
pected to be universal in that it does not depend on the
initial density p. Furthermore, the particle diffusion con-
stant D(a)=(1—a?)D(0) decreases proportionally to
1—a? when the anisotropy is introduced. Therefore, as a
function of D(a)t, the result (11) does not depend on the
anisotropy and in fact it is the same as expressions found
for other A + A — A models, with different dynamical
rules [3].

For 4 + A —0, the appropriate mapping is to identify
odd charges with particles 4 and even charges with emp-
ty sites [10]. The generating function is

4A 4 p
(1—a®u[(1—p —A )P—p?]
(12)

E(u)= 3 Gy (u)=
j=0

The large-time behavior is similar to the aggregation re-
action, with the result which is less than (11) by a factor
of 2. The finite-time results for both models do depend
on details on the dynamical rules. For our particular
choice of synchronous dynamics, there exists an exact re-
lation [10] which holds also for the anisotropic case,
checked by comparing the generating functions,
2¢co(t;p)=c 4(t;2p). Here the subscripts denote the out-
come while the added argument stands for the initial den-
Sity.

For the AB model, we assume that initially particles
are placed with density p, but now a fraction a of them
are type A, and a fraction f=1—a are type B. The con-
centration difference is constant during the reaction,
(a—pB)p. At large times, this is also the limiting value of
the density of the majority species, while the density of
the minority species vanishes. We assume a =3 ( A ma-
jority) without loss of generality.

The dynamics of the 4B model can be related to that
of the coagulating-charge model by adapting the ideas of
[7]. The dynamics of the “sticky” A4 + B —0 model can
be viewed as coagulation. Thus we consider the 4B par-
ticles as new charges, +1 for 4 and —1 for B. If the net
charge of a coagulated cluster is positive then we regard
it as a group of A particles (equal in their number to the
charge value). If the charge is negative, we consider the
cluster a B particle, while if the charge is O we regard this
cluster as nonexistent (0).

The probability of having an m-particle cluster in the
original positive-charge-only model was given by f ,, ().
Each such cluster can have new (%) charge n =—m,
—m +2,...,m —2,m. The key observation is that hav-
ing a “species” label assigned to a particle at time =0 is
statistically independent of its motion and coagulation as
part of clusters at later times. The density of m-particle
clusters with exactly n units of charge can be calculated
as follows:

7} (m +n)/2/3(m —n)/2

mn()=a

x m!
[(m +n)21[(m —n)/2]!
The concentration of A, i.e., the density per site of
the + charge, can be written as c(f)
=3 [ Sm=nn+r... Ymn(t)]. After some algebra,
we get the generating function

fin) . (3)

E(u) b 9 S (x,»)
u)= X——y— x,p) .
(1—a®>u(p+A,—1) | Ox Yoy Y
(14)
Here we introduced the function
n+2j

Sx,p)=3 Ex'”'jyj
n=1 j=0

J
- 2x
V1i—4xy (1—2x +V1—4xy )’
and the variables x=pa/(p+A,—1),
y=pB/(p +A,—1). The evaluation of the double sum
is nontrivial; see [8] for details.

It is useful to introduce the parameter b =a—[3=0
which measures the excess of 4 at time t=0, so that
a=(1+b)/2 and pB=(1—>b)/2. For the equal-
concentration case, b=0, the large-time behavior is
governed by the singularity at u=1,

N S
( 1—u )3/4

(15)

E(u)=

\ 1—p
201—a?®)*  4vp (1—a?)y/*

X (1—u)'”?

+0(1—u) (16)
The leading-order density follows from the first term,
Vp (17)

1)~ .
2F(3/4)(1—02)1/411/4
Similar to the single-species reactions, the anisotropy a
dependence can be absorbed in the diffusion constant, in
terms of D(a)t. The exponent | was derived in [7] for
different (isotropic) dynamical rules.
An expansion for fixed b =a—p> 0 yields
)
bp 4 1—b
(1—a®b3p
_201=b*)(2—b%p)
(1_a2)3/2b5p2

E(u)= - %

Vi—u +0(1—u) . (18)
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The first term corresponds to the constant contribution
c(t)=bp + - - -, as expected for the majority species. In
fact, expansions near ¥ =1 are nonuniform in the limits
b—0" and b—0"; here we used for the first time the
fact that the majority species is 4. The approach to the
constant asymptotic density is given by the third term,

(1—b2%)(2—b?)
c(t)—bp= Vb p1—a?) /232

This difference is the density of the minority species B.
As before, the anisotropy is fully absorbed in the diffusion
rate, while the exponent is consistent with [7].

It is of interest to explore the nonuniform behavior
near b=0 within the crossover scaling formulation. The
appropriate scaling combination, o, turns out to be pro-
portional to b /(1—u)!/%; we define

o=Vp(1—a®)*b/(1—u)'* . (20

In the double limit b —0 and u—1", with fixed o, we
obtain the scaling relation

E(uw)=p Y(1—a?®) " b 3R(0), 1)

(19)

where the scaling function R, analytic at 0 =0, can be de-
rived exactly [8],

_olo+Via+o?)
4V'4+02 '

For 0 <<1, R(0)=10’+10*+0(c®). The leading
term here reproduces the first term in (16). The latter

R (o) (22)

was the limiting form for u — 1 at b=0. The second term
in (16), however, is not of the form ~b —30*. Corrections
to the leading scaling behavior correspond to this term in
the b=0 expansion (16).

For o—»>+o, we get the expansion R (o)
=0*+1—4072+0(0~*). The leading term here repro-
duces the first term in (18); the limit o0 — + o corre-
sponds to u —1 at fixed small positive b. Interestingly,
the next two terms in (18) are also reproduced in their
small-b form by the next two terms here. The second
term yields 1/[(1—a2)b%p] in E (u). The third term in
(18) is reproduced with the numerator 4 which is the
small-b limiting value.

The scaling description provides a uniform limiting ap-
proximation in the double limit 6—0 and u—1.
Specifically, the region of nonuniform behavior near b=0
is exploded by the large factor ~(1—u)~ /4. In terms of
o, the behavior is smooth and well defined. For instance,
the result (22) applies equally well for o <0 which corre-
sponds to A becoming the minority species. The limit of
u—1" at small fixed b<O0 is described by the limit
o0——o, R(c)=—1+40"24+0 (0 %), similar in struc-
ture to the 0 — + o« expansion but without the constant-
density first term.

In summary, our exact results for the large-time parti-
cle densities of reaction-diffusion models in 1D show ex-
pected universal power-law behaviors. Anisotropy of
hopping has no effect on the universality class of the
models studied; it can be absorbed in the diffusion con-
stant.

[1] T. Liggett, Interacting Particle Systems (Springer, New
York, 1985); V. Kuzovkov and E. Kotomin, Rep. Prog.
Phys. 51, 1479 (1988); V. Privman, Trends Stat. Phys. 1, 89
(1994).

[2] D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642
(1983); K. Kang and S. Redner, Phys. Rev. Lett. 52, 955
(1984); K. Kang, P. Meakin, J. H. Oh, and S. Redner, J.
Phys. A 17, L665 (1984); K. Kang and S. Redner, Phys.
Rev. A 32, 435 (1985); S. Cornell, M. Droz, and B. Cho-
pard, ibid. 44, 4826 (1991); V. Privman and M. D. Gryn-
berg, J. Phys. A 25, 6575 (1992); B. P. Lee, ibid. 27, 2533
(1994).

[3] M. Bramson and D. Griffeath, Ann. Prob. 8, 183 (1980);
D. C. Torney and H. M. McConnell, J. Phys. Chem. 87,
1941 (1983); Z. Racz, Phys. Rev. Lett. 55, 1707 (1985); A.
A. Lushnikov, Phys. Lett. A 120, 135 (1987); M. Bramson
and J. L. Lebowitz, Phys. Rev. Lett. 61, 2397 (1988); D. J.
Balding and N. J. B. Green, Phys. Rev. A 40, 4585 (1989);
J. G. Amar and F. Family, ibid. 41, 3258 (1990); D. ben-
Avraham, M. A. Burschka, and C. R. Doering, J. Stat.
Phys. 60, 695 (1990); M. Bramson and J. L. Lebowitz, ibid.
62, 297 (1991); V. Privman, ibid. 69, 629 (1992).

[4]R. Kopelman, C. S. Li, and Z.-Y. Shi, J. Lumin. 45, 40

(1990); R. Kroon, H. Fleurent, and R. Sprik, Phys. Rev. E
47, 2462 (1993).

[5] S. A. Janowsky, Phys. Rev. E 51, 1858 (1995). Two recent
reports have presented new numerical studies as well as
the first analytical approaches aimed at explaining the ex-
ponent value 1 via relation to interface growth. The
hard-core interactions are crucial to such explanations; see
I. Ispolatov, P. L. Krapivsky, and S. Redner, Phys. Rev. E
52, 2540 (1995); S. A. Janowsky, ibid. 52, 2535 (1995).

[6] V. Privman, J. Stat. Phys. 72, 845 (1993); V. Privman, E.
Burgos, and M. D. Grynberg, Phys. Rev. E 52, 1866
(1995).

[7] P. Krapivsky, Physica A 198, 135 (1993); 198, 150 (1993).

[8] V. Privman, A. M. R. Cadilhe, and M. L. Glasser, J. Stat.
Phys. 81, 881 (1995).

[9]11. M. Sokolov and A. Blumen, Phys. Rev. E 50, 2335
(1994).

[10] V. Privman, Phys. Rev. E 50, 50 (1994).

[11] H. Takayasu, Phys. Rev. Lett. 63, 2563 (1989).

[12] H. Takayasu, M. Takayasu, A. Provata, and G. Huber, J.
Stat. Phys. 65, 725 (1991); S. N. Majumdar and C. Sire,
Phys. Rev. Lett. 71, 3729 (1993).

[13] J. L. Spouge, Phys. Rev. Lett. 60, 871 (1988).



